Captura de pantalla de 2015-12-04 10-06-31.png

(a) Obviamente W_1 \subset C([0,1]) pues los elementos W_1 son funciones continuas en el intervalo [0,1]. Sean f,g dos elementos del conjunto W_1. Existen pues, a_1,b_1, a_2, b_2, números reales, tales que

f=a_1 x+ b_1 x^3,

g=a_2 x + b_2 x^3.

Sean \lambda, \mu dos números reales.  Entonces

\lambda f + \mu g = \lambda (a_1 x+ b_1 x^3)+ \mu (a_2 x + b_2 x^3) = (\lambda a_1+ \mu a_2) x+ (\lambda b_1 + \mu b_2 ) x^3.

Esto prueba que \lambda f + \mu g pertenece a W_1 y dicho conjunto es un subespacio vectorial de C([0,1]). Usando el  mismo razonamiento podemos ver que W_2 es un subespacio vectorial.

(b) La suma W_1+W_2  es el subespacio vectorial cuyos elementos son de la forma

f+g, con f \in W_1 y g \in W_2.

Pero esto supone que

f+g =ax+bx^3+a' +b'x+c' x^2 = a' + (a+b')x+c'x^2 + bx^3.

Lo que significa que W_1 + W_2 = \{ a+bx+cx^2+dx^3: a,b,c,d \in \mathbb{R} \}. Obviamente la suma no es directa pues

W_1 \cap W_2 = \{ ax : a \in \mathbb{R} \} \neq \{0\}.

Finalmente, es fácil ver que

dim W_1 = 2, dim W_2 = 3.